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We propose the mathematical model of quasi-distributed
gain in fiber laser systems with cavity dumping. Particularly,
we consider in detail the case of a small number of periodic
cells in such lasers. The study of the signal gain in Yb-doped
active fiber includes the experimental measurement of its
characteristics and the theoretical approximations based on
experimental results. Theoretical analysis of laser schemes
with quasi-distributed gain considered here enables opti-
mization of the output pulse characteristics for various
numbers of active fiber cells. © 2020 Optical Society of
America

https://doi.org/10.1364/OL.384206

Fiber lasers with quasi-distributed gain enable generating high-
energy pulses by combining several sections of active fiber [1].
In such lasers, high-output energy is achieved as a result of the
long cavity length and multiple signal gains inside the laser
cavity. However, to achieve high-output energies, it is necessary
to optimize both the cavity device order and the set of laser
parameters. To perform optimization, analytical studies are nec-
essary. In this work, we consider a fiber laser setup that consists
of several cells of active fibers, passive fibers, and optical devices
that introduce additional losses. Such a scheme can be used to
work with fiber lasers with quasi-distributed gain in the case of
non-periodical cells and fiber lasers with cavity dumping [2–8]
with strong periodic cells, as depicted in Fig. 1. Here we consider
strong periodic cells. Since the number of laser parameters to
be optimized grows with the number of active fiber cells, it is
necessary to develop new effective theoretical approximations
that make it easier to obtain the optimal laser parameters. In this
Letter, we propose a general theoretical method to find the gain
distribution in a fiber laser with quasi-distributed gain and study
the behavior of the output signal for various parameters of a fiber
laser with cavity dumping.

In order to simulate and optimize the average output power
in fiber lasers with quasi-distributed gain, here we propose the
theoretical method to estimate the small signal gain and satura-
tion power as a function of experimental setup characteristics in
a normal dispersion Yb-doped active fiber.

The measurement scheme of the Yb-doped fiber gain is
shown in Fig. 2. We use a figure-eight fiber laser based on a

polarization-maintaining fiber as a source of input pulses [9].
The source provides short pulses with a duration of 40 ps at the
repetition rate of 15.16 MHz. To vary average power of input
pulses in the range of 0.0005–0.5 W, we use an additional fiber
pre-amplifier. Amplified pulses are launched into measured
amplifying double-clad fiber LIEKKI Yb 1200—6/125 with
a length of 2.5 m. We consistently measure average power of
output pulses for different pumping powers in the range of
0.2–3.6 W at 976 W. The power of output pulses is measured
by integrating an optical spectrum registered by an optical
spectrum analyzer.

Normally, to measure the small signal gain of the input signal
with power less than 0.1µW, one needs to use additional devices
(such as additional couplers) in the experimental scheme [10].
However, to estimate the properties of Yb fiber, we propose
here the method of coefficient estimation, which does not need
additional experiment measurements for the small input signal.

The Yb-doped fiber signal gain can be analytically described
using the effective two-level gain model [11,12]. This model
can be applied directly using the previously obtained analytical
results [10]; however, the major drawback of this model is that
it does not take into account the background losses, or it is not

Fig. 1. Scheme of fiber laser with quasi-distributed gain.

Fig. 2. Experimental measurement scheme.
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integrable when including the background losses. Alternatively,
the signal gain can be estimated numerically using the simple
gain model based on the Schrödinger equation [13]. This model
is used widely for the mathematical description of the signal
evolution in all-normal ultra-long fiber lasers.

In the simple gain model, the saturation power and the small
signal gain are functions of the pump power Ppump and fiber
length L . In pulsed fiber lasers, the propagation of a signal in an
active fiber is governed by the generalized nonlinear Schrödinger
equation:

∂ A
∂z
=−i

β2

2

∂2 A
∂t2
− iγ |A|2 A+

g /2
1+ P (z)/Psat

A−
α

2
A. (1)

Here β2 and γ denote the dispersion and nonlinearity coeffi-
cients, respectively, g is the small signal gain coefficient, P (z) is
the average power at a given point inside the active fiber, Psat is
the gain saturation power, andα denotes the background losses.

To apply Eq. (1), it is necessary to know the saturation power
Psat and the small signal gain g . They can be derived theoreti-
cally from the gain coefficients measured experimentally for
various input powers, pump powers, and active fiber lengths.
In the theoretical method that we propose here, at first we esti-
mate the small signal gain from the experimental results using
the simple model based on Eq. (1) with α = 0. After this, we
estimate the value of Psat using a more accurate model that takes
into account background losses.

Let us examine the proposed algorithm in detail.

1. As a result of the experiment, we have the dependence
of the signal gain G = P (L)/P (0) on the input power
P (0). Here P (L) is the signal power at the fiber output.
Signal gain G is measured for different pump powers. Thus,
G = G(Ppump, P (0)) is a function of the pump power
Ppump and the input power. Similarly, the saturation power
Psat = Psat(Ppump), and the small signal gain g = g (Ppump).

To estimate the background losses, an experiment for
small fiber lengths and small pump powers was carried out;
in this case, the coefficient α = 0.09 m−1 was estimated
using asymptotic signal gain for the large input signal, as
shown in Ref. [10].

2. From the experiment, we have the values G j
i =

G(P j
pump, Pi (0)) for Ppump from 0.3 W to 3.5 W. Here

the upper index j corresponds to the j -th experimental
curve, and the lower index corresponds to the i -th exper-
imental point on the j -th curve. We consider here the
experimental results for a fixed pump power. For each
experiment, we obtain the small signal gain g using the
signal gain G as follows: to determine the non-saturated
gain, we use the simplified model without linear losses
Pz(z)= ĝ P (z)/(1+ P (z)/Psat). By integrating the sim-
plified model, one can obtain the linear system of equations
in order to estimate ĝ using the least-square method:
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The dependence of small signal gain on the pump power
may be obtained by the minimization of this functional
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ĝ j L

=

[∑
i
9

j
i

]
×

[∑
i
9

j
i ln G j

i

]
−

[∑
i

(
9

j
i

)2
]
×

[∑
i

ln G j
i

]
[∑

i
1

]
×

[∑
i

(
9

j
i

)2
]
−

[∑
i
9

j
i

]2 ,

(2)

where 9 j
i = Pi (0)(G

j
i − 1), and

∑
i 1 is the number of

points on the experimental curve. The corresponding theo-
retical approximation is shown in Fig. 3(a) by the dashed
curve, and the dots correspond to the experimental data.

3. For each set of experimental results for a given Ppump,
the theoretical small signal gain g (Ppump) has been
obtained above; consequently, one can determine the
saturation power as a function of the input signal power
Psat = P̂sat(P (0), G) at each point on the experimental
curve (using the full gain model with linear losses):

P̂sat(P (0), G)
P (0)

=
α/g

1− α/g

×
exp ((1− α/g )αL) G − Gα/g

exp ((1− α/g )αL)− Gα/g
. (3)

Using the least-square method and Eq. (3), one can obtain
the average saturation power for each experimental curve:
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j
sat×[∑

i

Pi (0)/ P̂sat
(
Pi (0), G i

j )]
=

[∑
i

Pi (0)

]
, (4)

where P̂sat(Pi (0), G j
i ) denotes the saturation power from

Eq. (3) at the i -th point of the experimental curve that
corresponds to a given P j

pump.

Figure 3(b) demonstrates the dependence of the pump power
on the saturation power: the dashed line shows the theoretical
approximation, and the dots show the experimental data.

One can see that the experimental results in Fig. 3 can be
approximated using the following formulas (Ppump is measured
in W):
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Fig. 3. Theoretical and experimental dependence of (a) small
signal gain and (b) saturation power on the pump power. The dashed
lines show the theoretical approximation, and the dots show the
experimental data.
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Fig. 4. Dependence of signal gain on the input signal power for dif-
ferent pump power values in (a) logarithmic scale and (b) natural scale.
Dots correspond to the experimental results, and solid curves illustrate
theoretical estimation.

g [1/m] = 2.09+ 0.5 · Ppump − 0.85/(Ppump + 0.01),

Psat[W] =−0.002+ 0.015 · Ppump + 0.0035 · P 2
pump.

Figure 4 shows the comparison of experimental (dots) and
theoretical (solid curves) dependence of the signal gain on
the input signal power for different experimental pump pow-
ers and chosen fiber length. As seen in the figure, theoretical
approximation is in good accordance with the experimental
results.

To study the dynamics of a slowly varied envelope in the fiber,
we use the non-conservative nonlinear Schrodinger equation
[Eq. (1)]. To obtain the generation regimes with a stable energy
balance inside the laser cavity, we use the balance equations that
describe the dynamics of the average power P inside the active
medium:
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where G = P (L)/P (0) is the saturated gain coefficient.
During the theoretical study, we have developed the general

iterative method to find the gain distribution along the laser cav-
ity. In order to estimate the intracavity dynamics of the average
power, we consider the cavity with quasi-distributed gain as a
ring cavity with n active fiber sections and multiplicative losses.
In Fig. 1, n corresponds to the number of roundtrips of the active
fiber during the roundtrip time TR . On these assumptions, the
average power dynamics depends only on the gain coefficients
G i (1< G i < exp{(g − α)L i }) and coefficients of losses Ri

(R1 = . . .= Rn−1 6= Rn = Rn−1 · Rout < 1), where i denotes
the number of the active fiber section, and L i is the length of the
i -th active fiber. Thus, the total gain is G total ≡ 1/

∏
Ri
=
∏

G i
.

In general, we can use the set of coefficients {G0
i =

(G total)
1/n, 1≤ i ≤ n} as the initial gain distribution. For

this configuration, the optimal initial distribution is the follow-
ing: {G0

i = (q)
i/Rn−1; q = R−2/(n(n+1))

out , 1≤ i ≤ n}. Here
the upper index corresponds to the iteration number.

Thus, we obtain the following iterative process:
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We use the iteration process with the following convergence
criterion: max

1≤i≤n
|Pi (0) j G i

j Ri − Pi+1(0) j
|/Pi+1(0) j < ε2. In

the iterative process, ε1 and ε2 are small preassigned values.
In the case of highly nonlinear intracavity dynamics, one can

use a more general model that takes into account the depend-
ence on the pump power and background losses in the active
fiber [14–16]. This algorithm can be easily generalized due to
the integrability of the effective two-level gain model.

Figure 5(a) shows the signal power dynamics in a laser
cavity with eight active fiber sections for different out-
put reflectivities on the Q-switcher Rout from 0.05 to 0.5.
Here g = 3.61/m, Psat = 93 mW, α = 0.091/m, and
L = 2.5 m for the pump power 3.5 W. The loss coeffi-
cients between active fibers R1, R2, . . . , Rn−1 are equal to
exp(−(2 · LPF + 1) · ln(10)/10) · RS ≈ 0.68, and they include
the passive fiber losses, 1 dB isolator losses, and pass switcher
coefficient RS = 0.9; the coefficient Rn = Rn−1 · Rout addi-
tionally includes the output reflectivity on the Q-switcher. In
Fig. 5(a), one can see that the signal gain in the n-th active fiber
Gn approaches 1/Rn−1 with the increase in n.

Figure 5(b) shows the dependence of output average signal
power on the number of active fiber sections for different output
reflectivities on the Q-switcher. It may be seen that the signal
power has non-trivial behavior for a small number of fiber sec-
tions. At n = 1, there is an analytical solution represented as
follows:

Eout
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= Pout = (1− Rout) RS

( g
α
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)

×

Psat

(
C − R−α/g

n

)
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n C − R−α/g
n
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where roundtrip time TR = n0 · (L + LPF)/c , c is the speed of
light in vacuum, LPF is the passive fiber length, and n0 ≈ 1.5 is
the refractive index of the core. In Fig. 5(b), one can see that the
output power Pout is inversely proportional to the number of
fiber sections n; thus, the further increase in number of sections
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Fig. 5. (a) Signal power dynamics in laser cavity with eight active
fiber sections; (b) dependence of the output average power on the
number of active cavity elements. Dotted lines show similar theoretical
dependencies corresponding to asymptotic behavior according to
Eq. (6).
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is not viable. Hence, the optimal output signal energy for the
considered laser scheme is

Eout
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= Pout = (1− Rout)

RS

n

( g
α
− 1
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×

Psat

(
C − R−α/g

n−1

)
R−1

n−1C − R−α/g
n−1

, (6)

where roundtrip time TR = n0 ·
∑n

i=1(L i + LPF)/c =
n0 · (L + LPF) · n/c . Figure 5(b) shows that Eq. (6) is appli-
cable to the presented configuration with more than seven active
elements.

As the theoretical analysis shows, in order to maximize the
output energy in fiber lasers with distributed gain, one should
minimize the losses inside the periodic section and maximize the
output reflectivity.

We treat the gain efficiency as the ratio of the achieved out-
put energy to the pump power needed to achieve such energy;
in these terms, the use of cavity dumping allows to improve
the gain efficiency. It is possible to further increase the output
energy, because we have the almost unlimited possibility to
compensate for the output losses on the Q-switcher. For a sys-
tem with periodic amplification, the output energy is a linear
function of the fiber section length. On the contrary, if the
number of fiber sections is increased and the section length stays
the same, the output energy tends to a constant value when the
number of fiber sections grows indefinitely. Another advantage
of the quasi-distributed gain is that the balance between gain
and losses is achieved on significantly higher average powers as
a result of the absence of output coupler losses in a steady-state
system, which results in a reduced level of total losses. In other
words (see Fig. 6), in the case of the same repetition rate in an
all-normal ring cavity fiber laser with a cavity length of 2 km and

Fig. 6. Contour plots of output power and energy in (cavity length;
Rout) plane for various numbers of fiber sections. The values of g and
Psat are defined using formulas for Ppump = 0.7 W and L = 2.3 m.

cavity-dumping laser with five periodical fiber cells of 400 m,
the output energy of the second one will be higher with the lower
pump power and broader stable generation area. Particularly, in
Fig. 6, the case of n = 1 corresponds to the ring cavity fiber laser.

The results presented above show that the cavity dumping
system may efficiently be used not only for active mode locking,
but also for signal amplification. The advantages of the quasi-
distributed gain are related to its potential ability to compensate
for virtually unlimited losses on the output coupler, where the
output energy principally depends on the losses between the two
last active elements. For example, classical averaged equations
of the Ginzburg–Landau type always give the strongly overesti-
mated power values on stationary solutions, mainly because the
compensated losses are also averaged. As for the cavity dump-
ing systems, we have shown the efficiency of gain with a small
number of active elements; on the contrary, the increase in the
number of roundtrips of the periodic section leads to mode
locking, but negatively affects the output signal power.

A fiber laser scheme with the quasi-distributed gain was
considered. In order to maximize the average output power, the
theoretical modeling was carried out for different numbers of
active fiber cells. It has been shown that the average pulse power
is decreased linearly, and energy approaches the constant with
a significant growth in the number of active fiber cells. The
optimal output pulse energy was also theoretically estimated.
During the theoretical analysis, we have shown that the quasi-
distributed gain allows to compensate for any cavity losses and,
at the same time, enables to expand the stable pulse generation
area by increasing the number of active fiber cells.
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